000 | 02686cam a2200313 4500 | ||
---|---|---|---|
001 | 7706888 | ||
003 | OSt | ||
005 | 20140702100006.0 | ||
008 | 910612s1991 caua b 000 0 eng | ||
010 | _a91-24057 | ||
020 | _a080393971X | ||
035 | _a(NNNPsI)492 | ||
035 | _a(NNC)7706888 | ||
040 |
_aDLC _cDLC _dDLC |
||
050 |
_aQA278.2 _b.F63 1991 |
||
082 | 0 | 0 |
_a519.5/36 _220 |
100 | 1 |
_aFox, John, _d1947- |
|
245 | 1 | 0 |
_aRegression diagnostics / _cJohn Fox. |
260 |
_aNewbury Park, Calif. : _bSage Publications, _c1991 |
||
300 |
_a92 p. : _bill. ; _c22 cm. |
||
490 | 1 |
_aA Sage university papers series. Quantitative applications in the social sciences ; _vno. 07-079 |
|
504 | _aIncludes bibliographical references (p. 89-92). | ||
505 | 0 | _aLinear Least-Squares Regression -- The Regression Model -- Least-Squares Estimation -- Statistical Inference for Regression Coefficients -- The General Linear Model -- Collinearity -- Collinearity and Variance Inflation -- Coping with Collinearity: No Quick Fix -- Outlying and Influential Data -- Measuring Leverage: Hat-Values -- Detecting Outliers: Studentized Residuals -- Measuring Influence: Cook's Distance and Other Diagnostics -- Numerical Cutoffs for Diagnostic Statistics -- Jointly Influential Subsets of Observations: Partial-Regression Plots -- Should Unusual Data Be Discarded? -- Non-Normally Distributed Errors -- Normal Quantile-Comparison Plot of Residuals -- Histograms of Residuals -- Correcting Asymmetry by Transformation -- Nonconstant Error Variance -- Detecting Nonconstant Error Variance -- Correcting Nonconstant Error Variance -- Nonlinearity -- Residual and Partial-Residual Plots -- Transformations for Linearity -- Discrete Data -- Testing for Nonlinearity -- Testing for Nonconstant Error Variance -- Maximum-Likelihood Methods, Score Tests, and Constructed Variables -- Box-Cox Transformation of y -- Box-Tidwell Transformation of the xs -- Nonconstant Error Variance Revisited -- Recommendations -- Computing Diagnostics -- Least-Squares Fit, Joint Confidence Regions, and Tests -- Ridge Regression -- Hat-Values and the Hat Matrix -- The Distribution of the Least-Squares Residuals -- Deletion Diagnostics -- The Partial-Regression Plot -- Smoothing Scatterplots by Lowess -- Weighted-Least-Squares Estimation -- Correcting Least-Squares Standard Errors for Heteroscedasticity -- The Efficiency and Validity of Least-Squares Estimation When Error Variances Are Not Constant. | |
650 | 0 | _aRegression analysis. | |
650 | 0 |
_aSocial sciences _xStatistical methods. |
|
830 | 0 |
_aQuantitative applications in the social sciences ; _vno. 07-079. |
|
942 |
_2lcc _cBK |
||
999 |
_c162113 _d162073 |